Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1341891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404292

RESUMO

Lassa virus (LASV) causes an acute multisystemic hemorrhagic fever in humans known as Lassa fever, which is endemic in several African countries. This manuscript focuses on the progression of disease in cynomolgus macaques challenged with aerosolized LASV and serially sampled for the development and progression of gross and histopathologic lesions. Gross lesions were first noted in tissues on day 6 and persisted throughout day 12. Viremia and histologic lesions were first noted on day 6 commencing with the pulmonary system and hemolymphatic system and progressing at later time points to include all systems. Immunoreactivity to LASV antigen was first observed in the lungs of one macaque on day 3 and appeared localized to macrophages with an increase at later time points to include immunoreactivity in all organ systems. Additionally, this manuscript will serve as a detailed atlas of histopathologic lesions and disease progression for comparison to other animal models of aerosolized Arenaviral disease.


Assuntos
Febre Lassa , Vírus Lassa , Humanos , Animais , Febre Lassa/patologia , Macaca fascicularis , Antígenos Virais , Viremia
2.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38410448

RESUMO

Infection with Sudan virus (SUDV) is characterized by an aggressive disease course with case fatality rates between 40-100% and no approved vaccines or therapeutics. SUDV causes sporadic outbreaks in sub-Saharan Africa, including a recent outbreak in Uganda which has resulted in over 100 confirmed cases in one month. Prior vaccine and therapeutic efforts have historically prioritized Ebola virus (EBOV), leading to a significant gap in available treatments. Two vaccines, Erbevo ® and Zabdeno ® /Mvabea ® , are licensed for use against EBOV but are ineffective against SUDV. Recombinant adenovirus vector vaccines have been shown to be safe and effective against filoviruses, but efficacy depends on having low seroprevalence to the vector in the target human population. For this reason, and because of an excellent safety and immunogenicity profile, ChAd3 was selected as a superior vaccine vector. Here, a ChAd3 vaccine expressing the SUDV glycoprotein (GP) was evaluated for immunogenicity and efficacy in nonhuman primates. We demonstrate that a single dose of ChAd3-SUDV confers acute and durable protection against lethal SUDV challenge with a strong correlation between the SUDV GP-specific antibody titers and survival outcome. Additionally, we show that a bivalent ChAd3 vaccine encoding the GP from both EBOV and SUDV protects against both parenteral and aerosol lethal SUDV challenge. Our data indicate that the ChAd3-SUDV vaccine is a suitable candidate for a prophylactic vaccination strategy in regions at high risk of filovirus outbreaks. One Sentence Summary: A single-dose of ChAd3 vaccine protected macaques from lethal challenge with Sudan virus (SUDV) by parenteral and aerosol routes of exposure.

3.
Microbiol Spectr ; 11(3): e0349422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036346

RESUMO

Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. The pathogenesis of MVD remains poorly understood, partially due to the low number of cases that can be studied, the absence of state-of-the-art medical equipment in areas where cases are reported, and limitations on the number of animals that can be safely used in experimental studies under maximum containment animal biosafety level 4 conditions. Medical imaging modalities, such as whole-body computed tomography (CT), may help to describe disease progression in vivo, potentially replacing ethically contentious and logistically challenging serial euthanasia studies. Towards this vision, we performed a pilot study, during which we acquired whole-body CT images of 6 rhesus monkeys before and 7 to 9 days after intramuscular MARV exposure. We identified imaging abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to clinical, virological, and gross pathological hallmarks of MVD in this animal model. Quantitative image analysis indicated hepatomegaly with a significant reduction in organ density (indicating fatty infiltration of the liver), splenomegaly, and edema that corresponded with gross pathological and histopathological findings. Our results indicated that CT imaging could be used to verify and quantify typical MVD pathogenesis versus altered, diminished, or absent disease severity or progression in the presence of candidate medical countermeasures, thus possibly reducing the number of animals needed and eliminating serial euthanasia. IMPORTANCE Marburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. Much is unknown about disease progression and, thus, prevention and treatment options are limited. Medical imaging modalities, such as whole-body computed tomography (CT), have the potential to improve understanding of MVD pathogenesis. Our study used CT to identify abnormalities in the liver, spleen, and axillary lymph nodes that corresponded to known clinical signs of MVD in this animal model. Our results indicated that CT imaging and analyses could be used to elucidate pathogenesis and possibly assess the efficacy of candidate treatments.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Humanos , Animais , Doença do Vírus de Marburg/diagnóstico por imagem , Doença do Vírus de Marburg/patologia , Projetos Piloto , Tomografia Computadorizada por Raios X , Progressão da Doença , Primatas
4.
PLoS One ; 17(2): e0263834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143571

RESUMO

Disease associated with Nipah virus infection causes a devastating and often fatal spectrum of syndromes predominated by both respiratory and neurologic conditions. Additionally, neurologic sequelae may manifest months to years later after virus exposure or apparent recovery. In the two decades since this disease emerged, much work has been completed in an attempt to understand the pathogenesis and facilitate development of medical countermeasures. Here we provide detailed organ system-specific pathologic findings following exposure of four African green monkeys to 2.41×105 pfu of the Malaysian strain of Nipah virus. Our results further substantiate the African green monkey as a model of human Nipah virus disease, by demonstrating both the respiratory and neurologic components of disease. Additionally, we demonstrate that a chronic phase of disease exists in this model, that may provide an important opportunity to study the enigmatic late onset and relapse encephalitis as it is described in human disease.


Assuntos
Encefalite Viral/patologia , Infecções por Henipavirus/patologia , Pneumopatias/virologia , Vírus Nipah/patogenicidade , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Pneumopatias/patologia , Malásia , Masculino , Vírus Nipah/classificação
5.
Viruses ; 13(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34835103

RESUMO

Ebola virus disease (EVD) is a serious global health concern because case fatality rates are approximately 50% due to recent widespread outbreaks in Africa. Well-defined nonhuman primate (NHP) models for different routes of Ebola virus exposure are needed to test the efficacy of candidate countermeasures. In this natural history study, four rhesus macaques were challenged via aerosol with a target titer of 1000 plaque-forming units per milliliter of Ebola virus. The course of disease was split into the following stages for descriptive purposes: subclinical, clinical, and decompensated. During the subclinical stage, high levels of venous partial pressure of carbon dioxide led to respiratory acidemia in three of four of the NHPs, and all developed lymphopenia. During the clinical stage, all animals had fever, viremia, and respiratory alkalosis. The decompensatory stage involved coagulopathy, cytokine storm, and liver and renal injury. These events were followed by hypotension, elevated lactate, metabolic acidemia, shock and mortality similar to historic intramuscular challenge studies. Viral loads in the lungs of aerosol-exposed animals were not distinctly different compared to previous intramuscularly challenged studies. Differences in the aerosol model, compared to intramuscular model, include an extended subclinical stage, shortened clinical stage, and general decompensated stage. Therefore, the shortened timeframe for clinical detection of the aerosol-induced disease can impair timely therapeutic administration. In summary, this nonhuman primate model of aerosol-induced EVD characterizes early disease markers and additional details to enable countermeasure development.


Assuntos
Modelos Animais de Doenças , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/etiologia , Aerossóis , Animais , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Macaca mulatta , Masculino , RNA Viral/sangue , Carga Viral
6.
Viruses ; 12(12)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327396

RESUMO

We report the discovery and sequence-based molecular characterization of a novel virus, lanama virus (LNMV), in blood samples obtained from two wild vervet monkeys (Chlorocebus pygerythrus), sampled near Lake Nabugabo, Masaka District, Uganda. Sequencing of the complete viral genomes and subsequent phylogenetic analysis identified LNMV as a distinct member of species Kunsagivirus C, in the undercharacterized picornavirid genus Kunsagivirus.


Assuntos
Chlorocebus aethiops/virologia , Doenças dos Macacos/virologia , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Animais , Genoma Viral , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
7.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546624

RESUMO

Outbreaks of filoviruses, such as those caused by the Ebola (EBOV) and Marburg (MARV) virus, are difficult to detect and control. The initial clinical symptoms of these diseases are nonspecific and can mimic other endemic pathogens. This makes confident diagnosis based on clinical symptoms alone impossible. Molecular diagnostics for these diseases that rely on the detection of viral RNA in the blood are only effective after significant disease progression. As an approach to identify these infections earlier in the disease course, we tested the effectiveness of viral RNA detection combined with an assessment of sentinel host mRNAs that are upregulated following filovirus infection. RNAseq analysis of EBOV-infected nonhuman primates identified host RNAs that are upregulated at early stages of infection. NanoString probes that recognized these host-response RNAs were combined with probes that recognized viral RNA and were used to classify viral infection both prior to viremia and postviremia. This approach was highly successful at identifying samples from nonhuman primate subjects and correctly distinguished the causative agent in a previremic stage in 10 EBOV and 5 MARV samples. This work suggests that unified host response/viral fingerprint assays can enable diagnosis of disease earlier than testing for viral nucleic acid alone, which could decrease transmission events and increase therapeutic effectiveness.IMPORTANCE Current molecular tests that identify infection with high-consequence viruses such as Ebola virus and Marburg virus are based on the detection of virus material in the blood. These viruses do not undergo significant early replication in the blood and, instead, replicate in organs such as the liver and spleen. Thus, virus begins to accumulate in the blood only after significant replication has already occurred in those organs, making viremia an indicator of infection only after initial stages have become established. Here, we show that a multianalyte assay can correctly identify the infectious agent in nonhuman primates (NHPs) prior to viremia through tracking host infection response transcripts. This illustrates that a single-tube, sample-to-answer format assay could be used to advance the time at which the type of infection can be determined and thereby improve outcomes.


Assuntos
Genoma Viral , Doença pelo Vírus Ebola/diagnóstico , Interações Hospedeiro-Patógeno/genética , Doença do Vírus de Marburg/diagnóstico , RNA Viral/isolamento & purificação , Transcriptoma , Animais , Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Humanos , Macaca , Doença do Vírus de Marburg/virologia , Marburgvirus/genética , Análise em Microsséries , Proteínas Virais/sangue , Proteínas Virais/genética , Viremia
8.
Viruses ; 12(6)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485952

RESUMO

Lassa virus (LASV), an arenavirus causing Lassa fever, is endemic to West Africa with up to 300,000 cases and between 5000 and 10,000 deaths per year. Rarely seen in the United States, Lassa virus is a CDC category A biological agent inasmuch deliberate aerosol exposure can have high mortality rates compared to naturally acquired infection. With the need for an animal model, specific countermeasures remain elusive as there is no FDA-approved vaccine. This natural history of aerosolized Lassa virus exposure in Macaca fascicularis was studied under continuous telemetric surveillance. The macaque response to challenge was largely analogous to severe human disease with fever, tachycardia, hypotension, and tachypnea. During initial observations, an increase trend of activated monocytes positive for viral glycoprotein was accompanied by lymphocytopenia. Disease uniformly progressed to high viremia followed by low anion gap, alkalosis, anemia, and thrombocytopenia. Hypoproteinemia occurred late in infection followed by increased levels of white blood cells, cytokines, chemokines, and biochemical markers of liver injury. Viral nucleic acids were detected in tissues of three non­survivors at endpoint, but not in the lone survivor. This study provides useful details to benchmark a pivotal model of Lassa fever in support of medical countermeasure development for both endemic disease and traditional biodefense purposes.


Assuntos
Aerossóis/efeitos adversos , Febre Lassa/etiologia , Animais , Citometria de Fluxo , Exposição por Inalação , Febre Lassa/diagnóstico , Febre Lassa/virologia , Vírus Lassa/patogenicidade , Macaca fascicularis , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Telemetria , Ensaio de Placa Viral , Viremia/diagnóstico
9.
Sci Rep ; 9(1): 20199, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882748

RESUMO

During the Ebola virus disease (EVD) epidemic in Western Africa (2013‒2016), antimalarial treatment was administered to EVD patients due to the high coexisting malaria burden in accordance with World Health Organization guidelines. In an Ebola treatment center in Liberia, EVD patients receiving the combination antimalarial artesunate-amodiaquine had a lower risk of death compared to those treated with artemether-lumefantrine. As artemether and artesunate are derivatives of artemisinin, the beneficial anti-Ebola virus (EBOV) effect observed could possibly be attributed to the change from lumefantrine to amodiaquine. Amodiaquine is a widely used antimalarial in the countries that experience outbreaks of EVD and, therefore, holds promise as an approved drug that could be repurposed for treating EBOV infections. We investigated the potential anti-EBOV effect of amodiaquine in a well-characterized nonhuman primate model of EVD. Using a similar 3-day antimalarial dosing strategy as for human patients, plasma concentrations of amodiaquine in healthy animals were similar to those found in humans. However, the treatment regimen did not result in a survival benefit or decrease of disease signs in EBOV-infected animals. While amodiaquine on its own failed to demonstrate efficacy, we cannot exclude potential therapeutic value of amodiaquine when used in combination with artesunate or another antiviral.


Assuntos
Amodiaquina/uso terapêutico , Antivirais/uso terapêutico , Artemisininas/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Macaca mulatta , Masculino
11.
J Infect Dis ; 218(suppl_5): S486-S495, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30476250

RESUMO

The domestic ferret is a uniformly lethal model of infection for 3 species of Ebolavirus known to be pathogenic in humans. Reagents to systematically analyze the ferret host response to infection are lacking; however, the recent publication of a draft ferret genome has opened the potential for transcriptional analysis of ferret models of disease. In this work, we present comparative analysis of longitudinally sampled blood taken from ferrets and nonhuman primates infected with lethal doses of the Makona variant of Zaire ebolavirus. Strong induction of proinflammatory and prothrombotic signaling programs were present in both ferrets and nonhuman primates, and both transcriptomes were similar to previously published datasets of fatal cases of human Ebola virus infection.


Assuntos
Furões/genética , Doença pelo Vírus Ebola/genética , Macaca mulatta/genética , Transcriptoma , Animais , Citocinas/genética , Modelos Animais de Doenças , Feminino , Humanos
12.
Sci Rep ; 8(1): 10727, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013082

RESUMO

The recurrence of new human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) underscores the need for effective therapeutic countermeasures. Nonhuman primate models are considered the gold standard for preclinical evaluation of therapeutic countermeasures. However, MERS-CoV-induced severe respiratory disease in humans is associated with high viral loads in the lower respiratory tract, which may be difficult to achieve in nonhuman primate models. Considering this limitation, we wanted to ascertain the effectiveness of using a MERS-CoV infectious clone (icMERS-0) previously shown to replicate to higher titers than the wild-type EMC 2012 strain. We observed respiratory disease resulting from exposure to the icMERS-0 strain as measured by CT in rhesus monkeys with concomitant detection of virus antigen by immunohistochemistry. Overall, respiratory disease was mild and transient, resolving by day 30 post-infection. Although pulmonary disease was mild, these results demonstrate for the first time the utility of CT imaging to measure disease elicited by a MERS-CoV infectious clone system in nonhuman primate models.


Assuntos
Infecções por Coronavirus/diagnóstico , Pulmão/diagnóstico por imagem , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Animais , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , RNA Viral/isolamento & purificação , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Carga Viral/genética , Replicação Viral/genética
13.
J Infect Dis ; 218(suppl_5): S423-S433, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30053050

RESUMO

Previously, several studies have been performed to delineate the development and progression of Marburg virus infection in nonhuman primates (NHPs), primarily to clarify the mechanisms of severe (fatal) disease. After the 2013-2016 Ebola virus disease (EVD) epidemic in Western Africa, there has been a reassessment of the available filovirus animal models and the utility of these to faithfully recapitulate human disease. The high lethality of the NHP models has raised doubts as to their ability to provide meaningful data for the full spectrum of disease observed in humans. Of particular interest are the etiologic and pathophysiologic mechanisms underlying postconvalescent sequelae observed in human survivors of EVD and Marburg virus disease (MVD). In the current study, we evaluated the lesions of MVD in NHPs; however, in contrast to previous studies, we focused on the potential for development of sequelae similar to those reported in human survivors of MVD and EVD. We found that during acute MVD in the macaque model, there is frequent inflammation of peripheral nerves, autonomic ganglia, and the iris of the eye. Furthermore, we demonstrate viral infection of the ocular ciliary body and retina, testis, epididymis, ovary, oviduct, uterine endometrium, prostate, and mammary gland. These findings are relevant for both development of postconvalescent sequelae and the natural transmission of virus.


Assuntos
Doença do Vírus de Marburg/patologia , Animais , Modelos Animais de Doenças , Olho/patologia , Feminino , Gânglios/patologia , Humanos , Macaca mulatta , Masculino , Glândulas Mamárias Humanas/patologia , Nervos Periféricos/patologia , Sistema Urogenital/patologia
14.
J Infect Dis ; 218(suppl_5): S592-S596, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30016444

RESUMO

At the onset of the 2013-2016 epidemic of Ebola virus disease (EVD), no vaccine or antiviral medication was approved for treatment. Therefore, considerable efforts were directed towards the concept of drug repurposing or repositioning. Amiodarone, an approved multi-ion channel blocker for the treatment of cardiac arrhythmia, was reported to inhibit filovirus entry in vitro. Compassionate use of amiodarone in EVD patients indicated a possible survival benefit. In support of further clinical testing, we confirmed anti-Ebola virus activity of amiodarone in different cell types. Despite promising in vitro results, amiodarone failed to protect guinea pigs from a lethal dose of Ebola virus.


Assuntos
Amiodarona/farmacologia , Ebolavirus/efeitos dos fármacos , Amiodarona/farmacocinética , Amiodarona/uso terapêutico , Animais , Chlorocebus aethiops , Feminino , Cobaias , Doença pelo Vírus Ebola/tratamento farmacológico , Masculino , Células Vero
15.
Sci Rep ; 8(1): 6480, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691416

RESUMO

Ebola virus (EBOV) is a negative-strand RNA virus that replicates in the cytoplasm and causes an often-fatal hemorrhagic fever. EBOV, like other viruses, can reportedly encode its own microRNAs (miRNAs) to subvert host immune defenses. miRNAs are short noncoding RNAs that can regulate gene expression by hybridizing to multiple mRNAs, and viral miRNAs can enhance viral replication and infectivity by regulating host or viral genes. To date, only one EBOV miRNA has been examined in human infection. Here, we assayed mouse, rhesus macaque, cynomolgus macaque, and human samples infected with three EBOV variants for twelve computationally predicted viral miRNAs using RT-qPCR. Ten miRNAs aligned to EBOV variants and were detectable in the four species during disease with several viral miRNAs showing presymptomatic amplification in animal models. miRNA abundances in both the mouse and nonhuman primate models mirrored the human cohort, with miR-1-5p, miR-1-3p, and miR-T3-3p consistently at the highest levels. These striking similarities in the most abundant miRNAs during infection with different EBOV variants and hosts indicate that these miRNAs are potential valuable diagnostic markers and key effectors of EBOV pathogenesis.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/genética , MicroRNAs/genética , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Doença pelo Vírus Ebola/virologia , Humanos , Macaca fascicularis/genética , Macaca mulatta/genética , Camundongos , RNA Mensageiro/metabolismo , Replicação Viral/genética
16.
Sci Rep ; 8(1): 1250, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352230

RESUMO

Survivors of Ebola virus infection may become subclinically infected, but whether animal models recapitulate this complication is unclear. Using histology in combination with immunohistochemistry and in situ hybridization in a retrospective review of a guinea pig confirmation-of-virulence study, we demonstrate for the first time Ebola virus infection in hepatic oval cells, the endocardium and stroma of the atrioventricular valves and chordae tendinae, satellite cells of peripheral ganglia, neurofibroblasts and Schwann cells of peripheral nerves and ganglia, smooth muscle cells of the uterine myometrium and vaginal wall, acini of the parotid salivary glands, thyroid follicular cells, adrenal medullary cells, pancreatic islet cells, endometrial glandular and surface epithelium, and the epithelium of the vagina, penis and, prepuce. These findings indicate that standard animal models for Ebola virus disease are not as well-described as previously thought and may serve as a stepping stone for future identification of potential sites of virus persistence.


Assuntos
Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/patologia , Animais , Glândulas Endócrinas/virologia , Feminino , Genitália/virologia , Cobaias , Coração/virologia , Doença pelo Vírus Ebola/virologia , Fígado/virologia , Masculino , Sistema Nervoso Periférico/virologia
17.
Sci Rep ; 7(1): 5886, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725019

RESUMO

The recent epidemic of Ebola virus disease in West Africa resulted in an unprecedented number of cases and deaths. Due to the scope of the outbreak combined with the lack of available approved treatment options, there was strong motivation to investigate any potential drug which had existing data reporting anti-Ebola activity. Drugs with demonstrated antiviral activity in the nonhuman primate models already approved for another indication or for which there was existing safety data were considered to be priorities for evaluation by the World Health Organization. Sertraline hydrochloride was reported to have anti-Ebola activity in vitro alone and in combination with other approved drugs. Although the efficacy was less than 100% in the murine model, the established safety profile of this product, the potential benefit alone and in combination, as well as the lack of other available options prioritized this compound for testing in the Ebola virus intramuscular rhesus macaque challenge model. Using a blinded dosing strategy, we demonstrated that high dose sertraline monotherapy provided no benefit for the prevention of Ebola virus disease in rhesus macaques with regards to reduction of viral load, morbidity, or survival highlighting the challenges of translating results between in vitro and in vivo models.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Sertralina/uso terapêutico , Animais , Relação Dose-Resposta a Droga , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/patologia , Macaca mulatta , Masculino , Neutrófilos/patologia , Contagem de Plaquetas , Sertralina/administração & dosagem , Análise de Sobrevida , Carga Viral
18.
Genome Announc ; 5(18)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473378

RESUMO

The picornaviral genus Kunsagivirus has a single member, kunsagivirus A, which was discovered in migratory bird feces. We report here the discovery of a novel kunsagivirus in wild yellow baboon (Papio cynocephalus) blood. The genomic sequence of this virus indicates the probable need for the establishment of a second kunsagivirus species.

19.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974564

RESUMO

Simian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species. IMPORTANCE: Certain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution both in vitro and in vivo.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/fisiologia , Evolução Biológica , Interações Hospedeiro-Patógeno , Doenças dos Macacos/virologia , Animais , Interações Hospedeiro-Patógeno/genética , Macaca fascicularis , Doenças dos Macacos/genética , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , RNA Viral , Seleção Genética , Internalização do Vírus , Replicação Viral
20.
PLoS One ; 11(11): e0166318, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902714

RESUMO

In the fall of 2014, an international news agency reported that patients suffering from Ebola virus disease (EVD) in Liberia were treated successfully with lamivudine, an antiviral drug used to treat human immunodeficiency virus-1 and hepatitis B virus infections. According to the report, 13 out of 15 patients treated with lamivudine survived and were declared free from Ebola virus disease. In this study, the anti-Ebola virus (EBOV) activity of lamivudine and another antiretroviral, zidovudine, were evaluated in a diverse set of cell lines against two variants of wild-type EBOV. Variable assay parameters were assessed to include different multiplicities of infection, lengths of inoculation times, and durations of dosing. At a multiplicity of infection of 1, lamivudine and zidovudine had no effect on EBOV propagation in Vero E6, Hep G2, or HeLa cells, or in primary human monocyte-derived macrophages. At a multiplicity of infection of 0.1, zidovudine demonstrated limited anti-EBOV activity in Huh 7 cells. Under certain conditions, lamivudine had low anti-EBOV activity at the maximum concentration tested (320 µM). However, lamivudine never achieved greater than 30% viral inhibition, and the activity was not consistently reproducible. Combination of lamivudine and zidovudine showed no synergistic antiviral activity. Independently, a set of in vitro experiments testing lamivudine and zidovudine for antiviral activity against an Ebola-enhanced green fluorescent protein reporter virus was performed at the Centers for Disease Control and Prevention. No antiviral activity was observed for either compound. A study evaluating the efficacy of lamivudine in a guinea pig model of EVD found no survival benefit. This lack of benefit was observed despite plasma lamivudine concentrations in guinea pig of about 4 µg/ml obtained in a separately conducted pharmacokinetics study. These studies found no evidence to support the therapeutic use of lamivudine for the treatment of EVD.


Assuntos
Fármacos Anti-HIV/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Lamivudina/farmacologia , Zidovudina/farmacologia , Animais , Chlorocebus aethiops , Ebolavirus/isolamento & purificação , Cobaias , Células HeLa , Doença pelo Vírus Ebola/virologia , Humanos , Macrófagos , Projetos Piloto , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...